怎么证明半正定二次型的充要条件是正惯性指数等于秩,且秩小于n

问题描述:

怎么证明半正定二次型的充要条件是正惯性指数等于秩,且秩小于n

半正定阵的特征值都大于等于0,非零特征值个数是秩,因此正特征值个数(就是正惯性指数)是秩.反之,正惯性指数是秩,说明没有负特征值,特征值都大于等于0,因此半正定.