如图,在Rt三角形ABC中,角ACB=90度,AC=BC,点D是BC的中点,CE垂直AD,垂足为点E,BF平行AC交CE的延长线于点F,连接DF.请说明AB垂直平分DF的理由.
问题描述:
如图,在Rt三角形ABC中,角ACB=90度,AC=BC,点D是BC的中点,CE垂直AD,垂足为点E,BF平行AC交CE的延长线于点F,连接DF.请说明AB垂直平分DF的理由.
答
证明:∵BF平行于AC(已知)∴∠ACB+∠CBF=180°(两直线平行,同旁内角互补)∠ACE=∠BFC(两直线平行,内错角相等)∵∠ACB=90°(已知)∴∠CBF=180°-90°=90°∴∠FCB+∠BFC=90°∵∠ACE+∠CAD=90°(已知)∴∠B...