正弦定理a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)是怎么证明的?

问题描述:

正弦定理a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)是怎么证明的?

在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
2RsinD=BC (R为三角形外接圆半径)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
就0k了