设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(提示:利用中值定理证明).

问题描述:

设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-

f(ξ)
ξ
.(提示:利用中值定理证明).

证明:令F(x)=xf(x),由题意F(x)在[0,1]上连续,在(0,1)上可导,
且F(0)=0,F(1)=0,
由罗尔定理可知在(0,1)内至少存在一点ξ,使F′(ξ)=0,
即f(ξ)+ξf′(ξ)=0,
所以,在(0,1)内至少存在一点ξ,使f(ξ)=−

f(ξ)
ξ

答案解析:利用罗尔定理即可证明.
考试点:罗尔中值定理.
知识点:本题主要考查罗尔中值定理,属于基础题.