如图所示,等腰三角形ABC的底边BC为8cm,腰长为5cm,一动点P在底边上从点B向点C以0.25cm/s的速度移动,请你探究:当P运动几秒时,P点与顶点A的连线PA与腰垂直?

问题描述:

如图所示,等腰三角形ABC的底边BC为8cm,腰长为5cm,一动点P在底边上从点B向点C以0.25cm/s的速度移动,请你探究:当P运动几秒时,P点与顶点A的连线PA与腰垂直?

如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=12BC=4cm,∴AD=3cm,分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25cm,∴BP=4-2.25=1.75=0.25...