如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角.求四边形ABCD的面积.

问题描述:

如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角.求四边形ABCD的面积.

连接AC,就变成ADC和ABC两个三角形,如图:三角形ABC已知底AB=2(厘米) 高就是CE=6(厘米)那么三角形ABC面积就是2×6÷2=6(厘米)三角形ADC已知底DC=5(厘米)高就是AF=4(厘米) 三角形ADC面积是5×4÷2=10(平...
答案解析:连接AC,就变成ADC和ABC两个三角形,三角形ABC已知底AB=2(厘米),高就是CE=6(厘米),三角形ADC已知底DC=5(厘米),高就是AF=4(厘米);根据三角形的面积计算公式即可求出三角形ABC面积和三角形ADC面积,进而相加即可求出四边形ABCD面积.
考试点:组合图形的面积.
知识点:解答此题的关键是根据图,判断出阴影部分的面积是由哪些图形的面积相减所得,由此再根据相应的面积公式解答即可.