设函数y=x^2(cosx+根号下x),求微分dy

问题描述:

设函数y=x^2(cosx+根号下x),求微分dy

设函数y=x²(cosx+√x),求微分dy
dy={2x(cosx+√x)+x²[-sinx-1/(2√x)]}dx=[2xcosx+2x^(3/2)-x²sinx-(1/2)x^(3/2)]dx
=[2xcosx-x²sinx+(3/2)x^(3/2)]dx

dy=2x+(cosx+√x)+x²(--sinx+1/2√x),后面乘个dx就行了

y=x^2(cosx+√x),
dy=[2x(cosx+√x)+x²(-sinx+1/2*1/√x )]dx
=[2xcosx-x²sinx+2x√x+1/2*x√x]dx
=[x(2cosx-xsinx)+5/2*x√x]dx