微分方程y'=y(1-x)/x的通解

问题描述:

微分方程y'=y(1-x)/x的通解

dy/dx=((1-y^2)^(1/2))/((1-x^2)^(1/2))
dy/(1-y^2)^(1/2)=dx/(1-x^2)^(1/2)
arcsiny=arcsinx+C