已知函数F(x)=1/3的x次方,x属于【-1,1],函数G(x)=F(x)2-2aF(x)+3的最小值为H(a)
问题描述:
已知函数F(x)=1/3的x次方,x属于【-1,1],函数G(x)=F(x)2-2aF(x)+3的最小值为H(a)
1,求h(a)
2,是否存在实数m,同时满足1:m>n>3,2:当h(a)的定义域【n,m】时,值域【n2,m2】是否存在 ,若存在求出m,n的值,若不存在,说明理由.
答
设F(x)=(1/3)^x,因x∈[-1,1],则F(x)∈[1/3,3]令t=F(x),则:t∈[1/3,3],G(x)=t²-2at+3=(t-a)²+(3-a²),其中t∈[1/3,3]则:.. {12-6aa>3h(a)={ 3-a² ...