已知函数f(x)=lnx-a/x. (1)当a>0时,判断f(x)在定义域上的单调性; (2)若f(x)在[1,e]上的最小值为3/2,求a的值.

问题描述:

已知函数f(x)=lnx-

a
x

(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为
3
2
,求a的值.

(1)函数的定义域为(0,+∞),且f′(x)=x+ax2∵a>0,∴f′(x)>0∴f(x)在定义域上单调递增;(2)由(1)知,f′(x)=x+ax2①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为...