设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z} 证明:若s,t∈A,t≠0,则s/t=p^2-q^2没打错任何东西!
问题描述:
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z} 证明:若s,t∈A,t≠0,则s/t=p^2-q^2
没打错任何东西!
答
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z} 证明:若s,t∈A,t≠0,则s/t=p^2-q^2
没打错任何东西!