设P1,P2···,Pn是1,2,···,n的任意排列求证:1/(P1+P2)+1/(P2+P3)+···+1/(Pn-1+Pn)>(n-1)/(n+2)
问题描述:
设P1,P2···,Pn是1,2,···,n的任意排列求证:1/(P1+P2)+1/(P2+P3)+···+1/(Pn-1+Pn)>(n-1)/(n+2)
大手来解.过程要看的懂啊.
答
用Cauchy不等式.
((P1+P2)+(P2+P3)+...+(P(n-1)+Pn))(1/(P1+P2)+1/(P2+P3)+...+1/(P(n-1)+Pn))
≥ (1+1+...+1)² = (n-1)².
而(P1+P2)+(P2+P3)+...+(P(n-1)+Pn) = 2(P1+P2+...+Pn)-P1-Pn.
P1,P2,...,Pn是1,2,...,n的一个排列,故P1+P2+...+Pn = 1+2+...+n = n(n+1)/2.
又P1+Pn ≥ 1+2 > 2,故(P1+P2)+(P2+P3)+...+(P(n-1)+Pn) 于是1/(P1+P2)+1/(P2+P3)+...+1/(P(n-1)+Pn)
≥ (n-1)²/((P1+P2)+(P2+P3)+...+(P(n-1)+Pn)) > (n-1)/(n+2).