在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知向量m=(cosB,-cosA),向量n=(2c+b,a)且向量m∥向量n

问题描述:

在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知向量m=(cosB,-cosA),向量n=(2c+b,a)且向量m∥向量n
(1)求sinB+sinC的取值范围
(2)若a=4根号3,b+c=8,求△ABC的面积

∵向量m∥向量n,∴cosB、cosA均不为0,且-cosB/cosA = (2c+b)/a = (2sinC+sinB)/sinA∴-sinAcosB = 2sinCcosA + sinBcosA ,∴2sinCcosA + sin(A+B) = 0 = sinC·(1 + 2cosA)∵C是内角,∴sinC≠0,∴cosA = -1/2,A = 2...