f(x)=(x+1)ln(x+1)+m(x^2+2x) x>=0时,f(x)

问题描述:

f(x)=(x+1)ln(x+1)+m(x^2+2x) x>=0时,f(x)

f'(x)=ln(x+1)+1+2m(x+1)=ln(x+1)+2mx+2m+1已知x≥0 则ln(x+1)≥ln1=0又f(x)≤0恒成立则必需f'(x)≤0所以2mx+2m+1≤0即m≤-1/2(x+1)≤-1/2此时,函数单减只需f(0)=0≤0故m≤-1/2希望能帮到你O(∩_∩)O...