已知函数f(x)=2acos^2x+bsinxcosx-根号3/2,且f(0)=根号3/2,f(pai/4)=1/2
问题描述:
已知函数f(x)=2acos^2x+bsinxcosx-根号3/2,且f(0)=根号3/2,f(pai/4)=1/2
1.求f(x)的最小正周期
2.求f(x)的单调递减区间
3.函数f(x)的图像经过怎样的平移才能使图像对应的函数变为奇函数
答
1、f(x)的最小正周期为2π/2=π
2、令2kπ-π/2≤2x+π/3≤2kπ+π/2,以求f(x)的单调增区间,得
kπ-5π/12≤x≤kπ+π/12,(k∈Z)
令2kπ+π/2≤2x+π/3≤2kπ+3π/2,以求f(x)的单调减区间,得
kπ+π/12≤x≤kπ+7π/12,(k∈Z)
3、f(x)=sin(2x+π/3)对应的奇函数为±sin2x
f(x)=sin(2x+π/3)= sin[2(x+π/6)]
f(x)向左平移π/3得f(x+π/3)=sin[2(x+π/3+π/6)]= -sin2x,是奇函数.
继续向左平移周期的整数倍,得f(x+π/3+kπ)=sin[2(x+π/3+kπ+π/6)]= -sin2x,仍是奇函数.
f(x)向右平移π/6得f(x-π/6)=sin[2(x-π/6+π/6)]=sin2x,是奇函数.
继续向右平移周期的整数倍,得f(x-π/6-kπ)=sin[2(x-π/6-kπ+π/6)]=sin2x,仍是奇函数.
综上所述,
f(x)向左kπ+π/3,或向右平移kπ-π/6,(k∈Z),仍是奇函数.