已知f(α)=[sin(π-α)cos(2π-α)tan(-α+3\2π))]\cos(-α-π)

问题描述:

已知f(α)=[sin(π-α)cos(2π-α)tan(-α+3\2π))]\cos(-α-π)
( 1)当α=-31/3π时f(α)的值
(2)若2f(π+α)=f(π/2+α)求(sinα+cosα)/+cos2α的值
( 3 )若f(α)=3/5,求sinα,tanα的值

由诱导公式得
f(a)=(sinacosacota/-cosa
=-cosa
(1)由上得f(a)=-cos(-31/3π)=-cos(-10π-π/3)=-cosπ/3=-1/2
(2) 即-2cos(π+a)=-cos(π/2+a)
2cosa=sina
所以tana=2
则sina+cosa/cos2a=sina+cosa/(cosa+sina)(cosa-sina)=1/(cosa-sina)=正负5分之根号5
(3)由已知得cosa=-3/5
sina=4/5 或 -4/5
tana=4/3 或-4/3