初一年级整式第二阶段练习答案.【三道】
问题描述:
初一年级整式第二阶段练习答案.【三道】
简答题.
①已知a²+b²=1,ab=2分之3,求a+b的值.
②若x+y+z=a,xy+yz+zx=b,求x²+y²+z²的值.(用a、b的代数式表示)
③已知(x-1)(x²+mx+n)=x³-5x²+10x-6,求m、n的值.
答
1、用平方公式(a+b)^2=a²+2ab+b²(x+y+z)^2=x^2+y^2+z^2+2xy+2xz+2yz即a^2=x^2+y^2+z^2+2b则x^2+y^2+z^2=a^2-2b3、这题对号入座就可以了(x-1)(x²+mx+n)=x³+(m-1)x²+(n-m)x-n=x³-5x...第一题怎么用平方公式去做?哎呦我已经说得那么明白了我写详细点 (a+b)^2=a²+2ab+b²=a²+b²+2ab=1+2*3/2=4(a+b)^2=4 所以a+b=2 或 负2望采纳