P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,如图,设∠APB=α,∠AQB=β,则α与β的关系是(  ) A.α+β=90° B.α=β C.α+2β=180° D.2α+β=180°

问题描述:

P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,如图,设∠APB=α,∠AQB=β,则α与β的关系是(  )
A. α+β=90°
B. α=β
C. α+2β=180°
D. 2α+β=180°

连接AO、BO;
∵∠PAO=∠PBO=90°,
∴∠P+∠AOB=180°,
∵∠AOB=2∠Q,
∴∠P+2∠Q=180°,
即α+2β=180°.
故选C.