计算:1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2008)(x+2009).
问题描述:
计算:
+1 x(x+1)
+1 (x+1)(x+2)
+…+1 (x+2)(x+3)
. 1 (x+2008)(x+2009)
答
∵
=1 x(x+1)
-1 x
,1 x+1
=1 (x+1)(x+2)
-1 x+1
,1 x+2
∴
=1 (x+n)(x+n+1)
-1 x+n
,1 x+n+1
∴原式=
-1 x
+1 x+1
-1 x+1
+1 x+2
-1 x+2
+…+1 x+3
-1 x+2008
1 x+2009
=
-1 x
1 x+2009
=
.2009 x(x+2009)