三角函数万能公式的推导

问题描述:

三角函数万能公式的推导

sinα=2sin(α/2)cos(α/2)
=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]
=[2tan(α/2)]/[1+(tanα/2)^2]
cosα=[cos(α/2)^2-sin(α/2)^2]
=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]
=[1-tan(α/2)^2]/[1+(tanα/2)^2]
tanα=tan[2*(α/2)]
=2tan(α/2)/[1-tan(α/2)^2]
=[2tan(a/2)]/[1-(tanα/2)^2]

sin2A=2sinAcosA=2sinAcosA/(cos^2A+sin^2A)......*,(因为cos^2A+sin^2A=1),再把*分式上下同除cos^2A,可得
余弦的也是化为二倍角,除以cos^2A+sin^2A
http://dl.zhishi.sina.com.cn/upload/62/84/00/1253628400.11366413.jpg

设tan(A/2)=t sinA=2t/(1+t^2) tanA=2t/(1-t^2) cosA=(1-t^2)/(1+t^2) 推导第一个:(其它类似)sinA=2sin(A/2)cos(A/2) =[2sin(A/2)cos(A/2)]/[sin^2(A/2)+cos^2(A/2)] 分子分母同时除以cos^2(A/2) =[2sin(A/2)cos(A/...