设函数f(x)=x+根号(2-x),证明:在(负无穷大,7/4】上f(x)是增函数,并求f(x)的最大值
问题描述:
设函数f(x)=x+根号(2-x),证明:在(负无穷大,7/4】上f(x)是增函数,并求f(x)的最大值
答
设函数f(x)=x+√(2-x),证明:在(-∞,7/4]上f(x)是增函数,并求f(x)的最大值
定义域:由2-x≧0,得x≦2
令f′(x)=1-1/[2√(2-x)]=1-[√(2-x)]/[2(2-x)]=[4-2x-√(2-x)]/[2(2-x)]>0,
由于2-x>0,故得4-2x-√(2-x)>0,2(2-x)>√(2-x),两边平方去根号得4(2-x)²>2-x,
(2-x)[4(2-x)-1]=(2-x)(7-4x)=(x-2)(4x-7)=4(x-2)(x-7/4)>0,由于已知x-2