以▱ABCD的四条边为边,在其形外分别作正方形,如图,连接EF、GH、IJ、KL.若▱ABCD的面积为5,则图中阴影部分四个三角形的面积和为______.
问题描述:
以▱ABCD的四条边为边,在其形外分别作正方形,如图,连接EF、GH、IJ、KL.若▱ABCD的面积为5,则图中阴影部分四个三角形的面积和为______.
答
过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,
∵四边形ABGF和四边形ADLE是正方形,
∴AE=AD,AF=AB,∠FAB=∠EAD=90°,
∴∠EAF+∠BAD=360°-90°-90°=180°,
∵∠EAF+∠EAM=180°,
∴∠EAM=∠DAN,
∴sin∠EAM=
,sin∠DAN=EM AE
,DN AD
∵AE=AD,
∴EM=DN,
∵S△AEF=
AF×EM,S△ADB=1 2
AB×DN,1 2
∴S△AEF=S△ABD,
同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,
∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×5=10.
故答案为:10.
答案解析:过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF和△ABD面积相等,同理求出理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK得出S=2S平行四边形ABCD,代入求出即可.
考试点:全等三角形的判定与性质;平行四边形的性质;正方形的性质.
知识点:本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,主要考查学生运用定理进行推理和计算的能力,题目比较好,但有一定的难度.