2²/1×3+4²/3×5+6²/5×7+8²/7×9+...+20²/19×20

问题描述:

2²/1×3+4²/3×5+6²/5×7+8²/7×9+...+20²/19×20

原式=1+1/﹙1×3﹚+1+1/﹙3×5﹚+1+1/﹙5×7﹚+……+1+1/﹙19×21﹚
=10+1/2[2/﹙1×3﹚+2/﹙3×5﹚+2/﹙5×7﹚+……+2/﹙19×21﹚]
=10+1/2×﹙1-1/3+1/3-1/5+1/5-1/7+……+1/19-1/21﹚
=10+1/2×﹙1-1/21﹚
=10+10/21
=10又10/21.

2²/1×3+4²/3×5+6²/5×7+8²/7×9+...+20²/19×21
=2²/(2²-1)+4²/(4²-1)+6²/(6²-1)+8²/(8²-1)+...+20²/(20²-1)
=(2²-1+1)/(2²-1)+(4²-1+1)/(4²-1)+(6²-1+1)/(6²-1)+(8²-1+1)/(8²-1)+...+(20²-1+1)/(20²-1)
=1+1/(2²-1)+1+1/(4²-1)+1+1/(6²-1)+1+1/(8²-1)+...+1+1/(20²-1)
=10+[(1/(2²-1)+1/(4²-1)+1/(6²-1)+1/(8²-1)+1/(20²-1)]
=10+1/2[(1-1/3)+(1/3-1/5)+(1/5-1/7)+(1/7-1/9)+...+(1/19-1/21)]
=10+1/2(1-1/21)
=10又10/21
来自数学春夏秋冬专业数学团队的解答!
很高兴为您解答,祝你学习进步!
如果您认可我的回答,请点击下面的【选为满意回答】按钮!
有不明白的可以追问!

题目有问题,按照规律,最后一个数应该是.+20²/19×21
2²/1×3+4²/3×5+6²/5×7+8²/7×9+...+20²/19×21
=4/1×3+16/3×5+36/5×7+64/7×9+...+400/19×21
=1+1/1×3+1+1/3×5+1+1/5×7+1+1/7×9+...+1+1/19×21
=1×10+1/2(1-1/3+1/3-1/5+1/5-.-1/21)
=10+1/2×20/21
=10又10/21