从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?

问题描述:

从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?

根据题意,将这11个数分为奇数与偶数两个组,偶数有5个数,奇数有6个数.若取出的5个数的和为奇数,则取出的5个数必有1个奇数、或3个奇数、或5个奇数.若有1个奇数时,有C61•C54=30种取法,若有3个奇数时,有C63•C...
答案解析:根据题意,将这11个数分为奇数与偶数两个组若取出的5个数的和为奇数,则取出的5个数必有1个或3个奇数
或5个奇数;分别求出三种情况下的取法情况数,相加可得答案.
考试点:排列、组合及简单计数问题.
知识点:本题考查计数原理的应用,本题解题的关键是看出5个数字可以相加得到奇数的情况,注意先分组,再表示出结果数,最后乘法计数原理进行计算,属于中档题.