f(x)=sin²ωx+√3cosωxXcos(π/2-ωx)(ω>0),且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2.
问题描述:
f(x)=sin²ωx+√3cosωxXcos(π/2-ωx)(ω>0),且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2.
1)求ω的值及f(x)的单调递增区间
(2)在△ABC中,a,b,c分别是角A,B,C的对边,若a=√3,b=√2,f(A)=3/2,求角C
答
1、显然cos(π/2-ωx)=sinωx,故√3cosωx *cos(π/2-ωx)=√3sinωx *cosωx= 0.5√3 sin2ωx而sin²ωx=0.5*(1-cos2ωx),故f(x)=0.5*(1-cos2ωx) + 0.5√3 sin2ωx=0.5√3 sin2ωx - 0.5cos2ωx +0.5=cos(π/6...