正方体ABCD-A1B1C1D1中,E、F、G、H、K、L分别是DC、DD1、A1D1、A1B1、BB1、BC的中点,O为底面中心,求证:这六点共面.

问题描述:

正方体ABCD-A1B1C1D1中,E、F、G、H、K、L分别是DC、DD1、A1D1、A1B1、BB1、BC的中点,O为底面中心,求证:这六点共面.


答案解析:接EF、FG、GH、HK、KL、LE、EG、LH、BD、B1D1,则EL∥BD,GH∥B1D1,BD∥B1D1,从而EL∥GH,过EL、GH做平面ELHG,E、L、H、G共面,设EG、LH与平面BDB1D1的交点分别为P、Q,则PQ∥EL∥GH,且P、Q分别为GE、LH的中点,由此能证明E、F、G、H、K、L这六点共面.
考试点:平面的基本性质及推论.
知识点:本题考查六点共面的证明,是中档题,解题时要注意空间思维能力的培养.