设a>0,f(x)=ex /a +a/ex 在R上是由函数 (1)求a的值 (2) 证明 f(x)在[ 0,+∝]上是增函数

问题描述:

设a>0,f(x)=ex /a +a/ex 在R上是由函数 (1)求a的值 (2) 证明 f(x)在[ 0,+∝]上是增函数

是偶函数吧?
(1)偶函数,满足f(-1)=f(1),f(-1)=1/ae+ae,f(1)=e/a+a/e
所以:1/ae+ae=e/a+a/e,即:ae-a/e=e/a-1/ae
即:a(e-1/e)=(1/a)(e-1/e)
所以:a=1/a,得:a=±1,因为a>0,所以:a=1;
(2)由(1),f(x)=e^x+1/e^(x)
令0≦x1