abcd是一个四位数,且abcd乘以9等于dcba,问a=?,b=?,c=?,d=?
问题描述:
abcd是一个四位数,且abcd乘以9等于dcba,问a=?,b=?,c=?,d=?
答
由题意可得(1000a+100b+10c+d)*9=1000d+100c+10b+a
若a>或=2,则该数一定变为5位数,又因为a不能为0,所以a=1,则d=9
因为dcba是9的倍数,a=1,d=9,可得9|(1+9+c+b)
得c+b=17或c+b=8
又由(1000a+100b+10c+d)*9=1000d+100c+10b+a可得10c-890b=80
将c+b=17和c+b=8分别代入,得
当c+b=17时,解得b=0.1不符合题意,所以不成立,
则可得2元一次方程:
10c-890b=80
c+b=8
可得b=0,将b=0代入,则得c=8
所以a=1,b=0,c=8,d=9