若x+y=5,x^2+y^2=13,则x^2y+2x^2y^2+xy^2=_________-

问题描述:

若x+y=5,x^2+y^2=13,则x^2y+2x^2y^2+xy^2=_________-

XY=(X+Y)^2-(X^2+Y^2)=25-13=12
原式=XY(X+2XY+Y)
=12(5+24)
=12*29
=348