求证函数f(x)=lg[√(x*x+1) -x]是奇函数如题.

问题描述:

求证函数f(x)=lg[√(x*x+1) -x]是奇函数
如题.

f(-x)=lg[√(x*x+1) +x]
=lg[√(x*x+1) -x]^(-1)
=-lg[√(x*x+1) -x]
=-f(x),
故奇函数

f(-x)=lg[√(x*x+1) +x]
=lg[√(x*x+1) -x]^(-1) (因为[√(x*x+1) +x]*[√(x*x+1) -x]=1)
=-lg[√(x*x+1) -x] (因为lg(1/x)=-lg(x))
=-f(x),
故奇函数
这样看得懂吗?