如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
问题描述:
如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.
(2)探究下列问题:
①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
答
(1)由题意可得出:y=x2-2x+1=(x-1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+4x-1=(x+2)2-5,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+2-1)2-5+1=(x+1...
答案解析:(1)根据题意得出函数解析式,进而得出顶点坐标即可;
(2)①首先得出函数解析式,进而利用函数平移规律得出答案;
②分别求出两函数解析式,进而得出平移规律.
考试点:二次函数图象与几何变换;二次函数的性质.
知识点:此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键.