已知函数f(x)是定义域为R上的偶函数,当x≥0时,f(x)=-x2+4x,求f(x)的解析式.

问题描述:

已知函数f(x)是定义域为R上的偶函数,当x≥0时,f(x)=-x2+4x,求f(x)的解析式.

∵函数f(x)是定义域为R上的偶函数,∴f(-x)=f(x),
令x<0则-x>0,又当x≥0时,f(x)=-x2+4x,
所以f(-x)=-(-x)2+4(-x)=-x2-4x
即x<0时f(x)=-x2-4x
故f(x)=

x2+4x,x≥0
x2−4x,x<0

答案解析:利用偶函数的定义f(-x)=f(x),把x≤0转化为-x≥0,再利用x≥0时,f(x)=-x2+4x求解.
考试点:函数奇偶性的性质.
知识点:本题考查了偶函数的定义和函数解析式的求解问题,难度不大.