Rt△ABC,中,角A=90°,BC=4,有一个内角为60°,点p在直线AB上不同于AB的一点,且∠ACP=30°,则PB的长

问题描述:

Rt△ABC,中,角A=90°,BC=4,有一个内角为60°,点p在直线AB上不同于AB的一点,且∠ACP=30°,则PB的长

因为∠ACP=30°,点p在直线AB上不同于AB的一点, 所以,∠C=60°,∠B=30°,∠BCP=30° 所以在三角形CPB中,PB=PC 又因为三角形APC是Rt△,且∠ACP=30°,所以CP=2CA,即BP=2AP=2/3AB 在Rt△ABC中,BC=4,∠B=30°,所以AC=2,AB...