已知向量a=(sinx,3/2),b=(cosx,-1) (1)若向量a//向量b时,求2cos平方x-sin2x的值 (2)(2)若(a+b)乘以b=(根2)/4,且x∈(0,π/2),求x的值.
已知向量a=(sinx,3/2),b=(cosx,-1) (1)若向量a//向量b时,求2cos平方x-sin2x的值 (2)
(2)若(a+b)乘以b=(根2)/4,且x∈(0,π/2),求x的值.
(1)a向量与b向量平行,可得sinx=-3/2cosx,由(cosx)2+(sinx)2=1得cosx的平方=4/13,带入得
2cos平方x-sin2x=2*4/13-2sinx*cosx=2*4/13-2*(-3/2)*4/13=20/13
(2)由若(a+b)乘以b=(根2)/4得,(sinx+cosx)*cosx-1/2=根号2/4,解得x=7π/24或11π/24.
大概思路就是这样,但是不知道算对米有。
(1)
a//b
=>sinx/ (3/2) = cosx/ (-1)
sinx = -(3/2)cosx
tanx = -3/2
tan2x = -3/(1- 9/4) = 12/5
2(cosx)^2 - sin2x
= cos2x-sin2x +1
= (5/13-12/13)+1 or (-5/13-12/13)+1
= 6/13 or -4/13
(2)
(a+b).b =√2/4
(sinx+cosx, 1/2).(cosx,-1) = √2/4
sinxcosx + (cosx)^2 -1/2 =√2/4
sin2x+ cos2x = √2/2
sin(2x+π/4) = √2/2
2x+π/4 =3π/4
x = π/4
1)因为 a//b ,所以,由向量共线的条件可得 -sinx-3/2*cosx=0 ,化简得 tanx=-3/2 ,因此 2(cosx)^2-sin2x=[2(cosx)^2-2sinxcosx]/[(sinx)^2+(cosx)^2] (凑上分母1)=(2-2tanx)/[(tanx)^2+1] (分子分母同除以 (co...