求曲线x=cost,y=sint,z=2t在点(√2/2,√2/2,π/2)处的切线及法平面方程

问题描述:

求曲线x=cost,y=sint,z=2t在点(√2/2,√2/2,π/2)处的切线及法平面方程

把z代入到x y 之中,在求 x y z 的偏导数,并代入点(√2/2,√2/2,π/2)可得切线斜率, 然后可得比例式的直线方程。
法平面方程:假设 空间存在点(a b c)用(a b c)和(√2/2,√2/2,π/2)相减的向量作为法向量,和切向量相乘积为0,化简后形成法平面方程。
望采纳。。。。。

∵x'(π/4)=-√2/2,y'(π/4)=√2/2,z'(π/4)=2
∴所求切线方程是(x-√2/2)/(-√2/2)=(y-√2/2)/(√2/2)=(z-π/2)/(2)
所求法平面方程是(-√2/2)(x-√2/2)+(√2/2)(y-√2/2)+2(z-π/2)=0