如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= ___ .
问题描述:
如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= ___ .
答
∵AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,
∴M、N为AB、AC的中点,即线段MN为△ABC的中位线,
∴BC=2MN=6.
故答案为:6.
答案解析:由AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,根据垂径定理可知M、N为AB、AC的中点,线段MN为△ABC的中位线,根据中位线定理可知BC=2MN.
考试点:三角形中位线定理;垂径定理.
知识点:本题考查了垂径定理,三角形的中位线定理的运用.关键是由垂径定理得出两个中点.