设函数f(x)=ax^2+bx+c(a>0且c不等于0),且f(1)=-(a/2),求证函数f(x)在区间(0,2)内至

问题描述:

设函数f(x)=ax^2+bx+c(a>0且c不等于0),且f(1)=-(a/2),求证函数f(x)在区间(0,2)内至
设函数f(x)=ax^2+bx+c(a>0且c不等于0),且f(1)=-(a/2),求证函数f(x)在区间(0,2)内至少有一个零点

证明:∵a>0 ,f(1)=-a/2
∴a+b+c=-a/2 f(1)0,则f(0)=c>0与f(1)异号∴(0,1)内有一个零点∴(0,2)内至少有一个零点.
(2)若c0与f(1)异号∴(1,2)内有一个零点∴(0,2)内至少有一个零点
∴综上,函数f(x)在区间(0,2)内至少有一个零点