函数y=x² -2ax+1的定义域为(0,2),求值域

问题描述:

函数y=x² -2ax+1的定义域为(0,2),求值域

y=(x-a)^2-a^2+1
对称轴是x=a
(1)a≤0,则在(0,2)上单调增,则有值域是(1,5-4a)
(2)0(3)1(4)a≥2,则在(0.2)上单调减,则有值域是(5-4a,1)

y = x^2-2ax +1
y' = 2x-2a =0
x= a
y'' = 2 >0 (min)
case 1: a ≤ 0
y > y(0) = 1
y 值域 ( 1, 5-4a)
case 2: 0min y = y(a)
=a^2-2a^2+1
= -a^2+1
y(0) = 1
y(2) = 5-4a (max)
值域 (-a^2+1, 5-4a)
case 3: a≥2
yy> y(2)=5-4a
值域 ( 5-4a, 1)