试说明N=5的平方×3的2n+1次方×2的n次方-3的n次方-3的n次方×6的n+2次方能被13整除

问题描述:

试说明N=5的平方×3的2n+1次方×2的n次方-3的n次方-3的n次方×6的n+2次方能被13整除

N=25*3^(2n+1)2^n-3^(2n+2)2^(n+2)
=3^(2n+1)2^n[25-3*2^2]
=13*3^(2n+1)2^n
所以能被13整除