用换元法解方程:[8(x^2+2x)/x^2-1]+[3(x^2-1)/x^2+2x]=11,可设y=_______,则原方程变形为______________
问题描述:
用换元法解方程:[8(x^2+2x)/x^2-1]+[3(x^2-1)/x^2+2x]=11,可设y=_______,则原方程变形为______________
答
(1)y=(x^2+2x)/x^2-1
(2)8y^2-11y[(x^2-1)/x^2+2x]+[3(x^2-1)/x^2+2x]=0
此时,令a={(x^2-1)/(x^2+2x)}......y1=(-11+5a)/32
y2=(-11-5a)/32
答
用换元法解方程:[8(x^2+2x)/x^2-1]+[3(x^2-1)/x^2+2x]=11,可设y=(x²+2x)/(x²-1),则原方程变形为8y+3÷y=11