设函数f(x)=x的3次方-4x的平方+5x-2,g(x)=x的平方+ax+b,若函数g(x)的零点为1和2,若方程f(x)+g(x)=mx有三个互不相同的实数根0,x1,x2,其中x1<x2,且对任意的x属于[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围

问题描述:

设函数f(x)=x的3次方-4x的平方+5x-2,g(x)=x的平方+ax+b,若函数g(x)的零点为1和2,若方程f(x)+g(x)=mx
有三个互不相同的实数根0,x1,x2,其中x1<x2,且对任意的x属于[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围