求一道求极限的高数题,lim(x趋近于无穷)[(x+1)/(x-1)]∧x

问题描述:

求一道求极限的高数题,lim(x趋近于无穷)[(x+1)/(x-1)]∧x

解法一:原式=lim(x->∞){[(1+2/(x-1))^((x-1)/2)]^[2x/(x-1)]}
={lim(x->∞)[(1+2/(x-1))^((x-1)/2)]}^{lim(x->∞)[2x/(x-1)]}
=e^{lim(x->∞)[2x/(x-1)]} (应用重要极限lim(z->∞)[(1+1/z)^z]=e)
=e^{lim(x->∞)[2/(1-1/x)]}
=e^[2/(1-0)]
=e²;
解法二:∵lim(x->∞){xln[(x+1)/(x-1)]}=lim(x->∞){[ln(1+1/x)-ln(1-1/x)]]/(1/x)}
=lim(y->0){[ln(1+y)-ln(1-y)]]/y} (令y=1/x)
=lim(y->0)[1/(1+y)+1/(1-y)] (0/0型极限,应用罗比达法则)
=1/(1+0)+1/(1-0)
=2
∴原式=lim(x->∞){e^[xln((x+1)/(x-1))]
=e^{lim(x->∞)[xln((x+1)/(x-1))]}
=e^(2)
=e²。

为简便省去极限号
分子分母同时除以x,
原式=[(1+1/x)/(1-1/x)]^x=[(1+1/x)]^x/[(1-1/x)]^x=[(1+1/x)]^x乘以[(1-1/x)]^{-x}=e×e=e²

lim(x→∞)[(x+1)/(x-1)]^x
=lim(x→∞){[1+2/(x-1)]^[(x-1)/2]}^2*[1+2/(x-1)]
=lim(t→∞)(1+1/t)^2t,其中t=(x-1)/2
=e^2

e^2