Cantor闭区间套定理开区间,半开区间为什么没有聚点?

问题描述:

Cantor闭区间套定理
开区间,半开区间为什么没有聚点?

首先你的问题表述是错的.相反开区间、半开区间都有聚点.概念问题.什么是聚点?点P(属于S)称为集合S的聚点,如果存在S中互异序列以点P为极限.与聚点相对的是孤立点.事实上开区间和半开区间的任何一个点都是聚点.
你的理解有误,你是想说为什么闭区间套定理不能把闭区间换成开区间或者半开区间.定理的证明(不管用哪种方法证的)都要用到闭区间,而对不闭的区间我们可能举出反例来(如对全体自然数n,开集族(0, 1/n)的交为空).