答
(1)∵f(x)=log4(4x+1)+kx(k∈R)是偶函数.
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
∵log4(4-x+1)=log4()=log4(4x+1)-log44x=log4(4x+1)-x,
∴log4(4x+1)-(k+1)x=log4(4x+1)+kx,
即2k+1=0
∴k=-
证明:(2)由(1)得f(x)=log4(4x+1)-x
令y=log4(4x+1)-x
由于y=log4(4x+1)-x为减函数,且恒为正
故当b>0时,y=log4(4x+1)+x-b有唯一的零点,此时函数y=f(x)的图象与直线有一个交点,
当b≤0时,y=log4(4x+1)+x-b没有零点,此时函数y=f(x)的图象与直线没有交点
对任意的实数b,函数y=f(x)图象与直线y=-x+b最多只有一个公共点.
答案解析:(1)根据偶函数可知f(x)=f(-x),取x=-1代入即可求出k的值;
(2)由(1)中结论,可以得到函数的解析式,构造函数y=log4(4x+1)-x,分析出函数的单调性及值域,根据函数零点的判定方法,我们易确定b取不同值时,函数零点个数,进而得到答案.
考试点:函数的零点;函数图象的作法;函数奇偶性的性质.
知识点:本题主要考查了偶函数的性质,以及对数函数图象与性质的综合应用,同时考查了分类讨论的思想,由于综合考查了多个函数的难点,属于难题