设总体X~N(12,4),有n=5的样本X1,X2,X3,X4,X5,求P{min(X1,X2…,X5)

问题描述:

设总体X~N(12,4),有n=5的样本X1,X2,X3,X4,X5,求P{min(X1,X2…,X5)

(2)求概率P{max{ X1,X2,X3,X4,X5}>15};P{min{ X1,X2,1、样本均值服从N(12,0.8) P(|样本均值-12|>1)=P(|样本均值-12|

P{min{ X1,X2,X3,X4,X5}=1-[P(X≥10)]^5=1-[1-P(X-12)/2<-1)]^5=1-F(1)^5
=1-(0.8413)^5=0.5786

P{min{ X1,X2,X3,X4,X5}