为什么实数方程的虚根必为两共轭复数
问题描述:
为什么实数方程的虚根必为两共轭复数
答
假定你所说的是实系数一元n次方程,如果不是多项式的话结论未必成立.
对于一元n次方程
P(x) = a_n x^n + a_{n-1} x^{n-1} + ...+ a_1 x + a_0 = 0
如果z=u+vi满足P(z)=0,且v非零,那么对P(z)取共轭得到
conj(P(z)) = P(conj(z)) = 0
所以conj(z)=u-vi也是P(x)=0的根.
或者更复杂一点,利用二项式定理展开所有的(u+vi)^k项,可以得到
(u+vi)^k = sum_{j=0..k} C(k,j) u^(k-j) v^j i^j
根据j的奇偶性可以最终把P(u+vi)分解成P(u+vi)=A(u,v)+i*B(u,v)的形式,这样A(u,v)=0,B(u,v)=0,可以得到P(u-vi)=A(u,v)-i*B(u,v)=0.
这种方法还适用于有理系数方程的二次无理根成对的证明.