一道简单的高次方程解方程 3x^4-2x^3-9x^2+12x-4=0

问题描述:

一道简单的高次方程
解方程 3x^4-2x^3-9x^2+12x-4=0

3x^4-2x^3-9x^2+12x-4=0
(3X-2)(X-1)(X-1)(X-2)=0
解得:
X1=2/3;X2=1;X3=2.


化简(3x-2)x^3-(3x-2)^2=0
(3x-2)(x^3-3x+2)=0
(3x-2)(x^3-x^2+x^2-3x+2)=0
(3x-2)(x-1)(x^2+x-2)=0
(3x-2)(x-1)(x-1)(x-2)=0
得x1=1 ,x2=2/3 ,x3=2

解:式子可化为(3X-2)X∧3-(3X-2)∧2=0
(3X-2)(X∧3-3X+2)=0
(3X-2)(X∧3-X∧2+X∧2-3X+2)=0
(3X-2)(X-1)(X∧2+X-2)=0
(3X-2)(X-1)(X-1)(X-2)=0
解得:
X1=2/3;X2=1;X3=2.

先将9x^4-12x+4因式分解,得:(3x-2)^2,
再将前项化为x^3(3x-2),两项合并,得:
(3x-2)(x^3-3x+2)=0
所以x=2/3或1或-2

通过特殊值法带入,可以令x=1.则可以满足此方程。
可以判定x-1为它的一个公因式。
用3x^4-2x^3-9x^2+12x-4除以 x-1,得出的结果还有一个公因式。3x^3+x^2-8x+4。由于其中有且只有一个公因式为0.所以,可以令3x^3+x^2-8x+4=0,那么只有当x=1时,正好满足此关系式。所以,同理,可分解因式得,3x^2+4x-4
原式通过化简得: (x-1)^2 * (3x-2)(x+2)=0
那么x=1 或者 x=2/3 或者 x = -2
经过验证,结果成立
所以x=1 , 2/3 , -2分别为方程的根。

3x^4-2x^3-9x^2+12x-4=0
x^3(3x-2)-3x(3x-2)+2(3x-2)=0
(3x-2)(X^3-3x-2)=0
(3x-2)(x^3-2x-x+2)=0
(3x-2)(x-2)(x-1)=0
X1=2/3 X2=2 X3=1
检验X3=1 不符合题意 舍去

对解高次不等式,高考的要求不会太高,不要求学生会解任意的高次不等式.解法如下:先观察,看有没有数满足上式(一般都是1,2,-1,-2等简单的数).可以看出X=1满足上式,说明有一个根为1(如果分解上式的话,一定有一项为(...

我不知道你是什么学历的,如果上过大学学过高数就简单多了。下面我说说初高中的解法。
利用分解法:
遇到这种高次方程先看看+1,-1,+2,-2,0
观察次方程很容易得到x=1,x=-2是它的根,然后继续求因式分解得到(x-1)(x+2)(ax^2+bx+c)=3x^4-2x^3-9x^2+12x-4=0;求出a=3,b=-5,c=2,这样可得到3x^2-5x+2=0,求得x=2/3或x=1。
所以此题得根是x=1,或-2,或2/3