首先我们可以从较简单的一元高次方程求根公式的推导过程来寻找规律,如推导X3+ax2+bx+c=0求根公式我是这样做的;根据前面公共根方程的推导定理我们知道,只要求出一个和X3+ax2+bx+c=0有一个公共相等根方程出来,就必可推导出符合二个方程求解的公解方程来.又根据前面公共根方程判别定理我们知道,如果方程X3+ax2+bx+c=0和另一方程x2+mx+n=0之间的系数存在:n3 +a(-mn2 )+b(m2n -2n2)+c(-m3+3mn )+a2(n2)+ab(-mn)+ac(m 2-2n )+b2(n)+bc(-m)+c2=0 函数关系时二个方程必有公共等根的.我本想在此公布我的论证结果,可是在这里无法标出平方,立方等,没办法公布,太让我失望。我六年前就攻破了所有方程求根公式的推导规律,看来只有等洋人发现这个规律的时侯,人类才会相信我的话了。刚才一位网友在回答我问题的时侯告诉如何标立方问题我表示感谢,我太不习惯这种标法。也不赞同他对我提问题的看法,兵法说,知彼知已百战不殆,我是知道阿贝尔

问题描述:

首先我们可以从较简单的一元高次方程求根公式的推导过程来寻找规律,如推导
X3+ax2+bx+c=0求根公式我是这样做的;
根据前面公共根方程的推导定理我们知道,只要求出一个和X3+ax2+bx+c=0
有一个公共相等根方程出来,就必可推导出符合二个方程求解的公解方程来.
又根据前面公共根方程判别定理我们知道,如果方程X3+ax2+bx+c=0和另一方程x2+mx+n=0之间的系数存在:n3 +a(-mn2 )+b(m2n -2n2)+c(-m3+3mn )+a2(n2)+ab(-mn)+ac(m 2-2n )+b2(n)+bc(-m)+c2=0 函数关系时二个方程必有公共等根的.
我本想在此公布我的论证结果,可是在这里无法标出平方,立方等,没办法公布,太让我失望。我六年前就攻破了所有方程求根公式的推导规律,看来只有等洋人发现这个规律的时侯,人类才会相信我的话了。刚才一位网友在回答我问题的时侯告诉如何标立方问题我表示感谢,我太不习惯这种标法。也不赞同他对我提问题的看法,兵法说,知彼知已百战不殆,我是知道阿贝尔论证错误所在的。阿贝尔却不知我是怎样做的,世界上没有人知道我是怎么做的。我唯一不成功的地方就是找不到说理的地方。
我的贡献不仅是这项,早在1996年,我就发现哥德巴赫猜想的近似计算公式,98年,发现了利用方程系数判别二个方程之间是否有等存在的判别定理,从而发明了对高次方程组进行公式化快速消元的问 1999年又发现只要二个方程有等根存在,就必定可推导出符合二个方程求解的公解方程问题,再经过六年艰苦卓绝的努力终于发现所有高次方程求根公式的推导规律。我只求有一个公开讲理的地方,其他没什么。