已知函数f(x)=ax3+(a-1)x2+(a-2)x+b的图象关于原点对称.(1)求f(x)的解析式;(2)若g(x)=f(x)-λx在(-1,0)上是增函数,求λ的取值范围.

问题描述:

已知函数f(x)=ax3+(a-1)x2+(a-2)x+b的图象关于原点对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-λx在(-1,0)上是增函数,求λ的取值范围.

(1)∵函数f(x)=ax3+(a-1)x2+(a-2)x+b的图象关于原点对称,∴f(0)=0,∴b=0;又∵f(-x)=-f(x),∴a-1=0,解得a=1;∴函数f(x)=x3-x;(2)∵g(x)=f(x)-λx=x3-x-λx,∴g′(x)=3x2-1-λ;又∵g...