问一道高数证明题设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明:(1)存在ξ∈(1/2,1)使得f(ξ)=ξ (2)存在一个η∈(0,ξ)使得f'(η)=f(η)-η+1

问题描述:

问一道高数证明题设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,
证明:(1)存在ξ∈(1/2,1)使得f(ξ)=ξ
(2)存在一个η∈(0,ξ)使得f'(η)=f(η)-η+1